Industrielle Absorptionstechnik

Vorstellung BSU Hamburg – Vattenfall 15.07.2009 Dipl.-Ing. Jan H. Engeland / JCI Industriekälte

Johnson Controls

Geschäftsbereiche

Building Efficiency

Gebäudetechnik

Steuerungen + Kältesysteme

Industriekälte (York / Sabroe seit 2005)

Power Solutions

Energiespeichersysteme

Energiemanagement

Batterien

Automotive Experience

Autoinnenausstattung

Steuerungen

Systeme für Sicherheit + Komfort

US\$ 35 mrd. Umsatz in 2008
136.000 Mitarbeiter weltweit – 6.000 in Deutschland

Leistungsfähigste Produktpalette aller Anbieter weltweit

Kälteanlagenbau und - service: Industrieniveau / Alle Systeme / alle Kältemittel + 100℃ / -100℃

Absorbtionskältesätze

Kaltwassersysteme

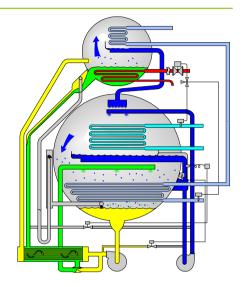
Aggregateund **Anlagenbau**

Turbokompressoren

Kolbenverdichter

VRF-/Fluid-Klimasysteme

Absorptionskälte – Was ist das?


$A - \underline{B}$ – sorption:

Aufnehmen eines Stoffes durch einen anderen Stoff => Mischung

$A - \underline{D}$ – sorption:

Anlagerung eines Stoffes an einen anderen Stoff

(Oberfläche oder Phasengrenze) => keine Mischung

Absorptionskälteanlagen: "Kühlen durch Heizen"/"Thermische Verdichtung"

- ⇒ Ausnutzung der Lösungs- / Absorptionsfähigkeit eines Stoffpaares
- ⇒ Absenken des Siedepunktes durch Unterdruck (Beispiel: H₂O verdampft bei 8 mbar und 3,7℃)
- ⇒ Kontinuierlicher Prozess
- ⇒ Ein Absorber ist ein "Wärmetransformator", KEIN Rückkühler!

Absorptionskälteanlage – Allgemein

Geschichte der Absorptionskälte

1810: Arbeitsstoffpaar H₂SO₄ / H₂O – John Leslie

1859: Arbeitsstoffpaar NH₃ / H₂O

1945: Arbeitsstoffpaar H₂O / LithiumBromid

John Leslie, Quelle: Wikipedia

Arbeitsstoffpaare

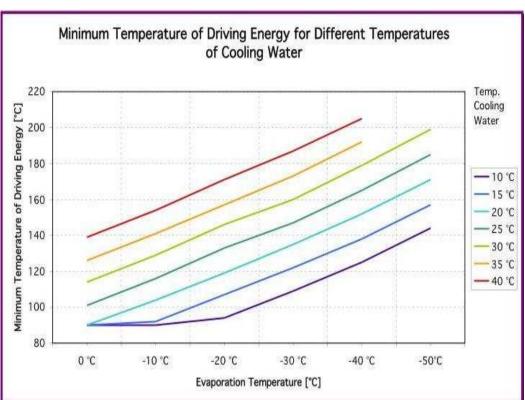
(1) H_2O – LiBr: 95 % aller Großanwendungen, Standard für Klimabereich ($H_2O > 4$ °C)

(2) $NH_3 - H_2O$: Industrieanwendungen, $NH_3 > -60$ °C, auch mehrstufig, Sonderbau möglich

NH₃ / H₂O – Absorptionskältemaschine

Kältemittel: NH₃

Lösungsmittel: H₂O


Kälte: > - 60℃

Baugrößen: Beliebig,

Mehrstufig

Quelle: mattes engineering GmbH / Berlin

Quelle: Colibri BV / Vaals - Niederlande

H₂O / Lithiumbromid – Absorptionsflüssigkeitskühler

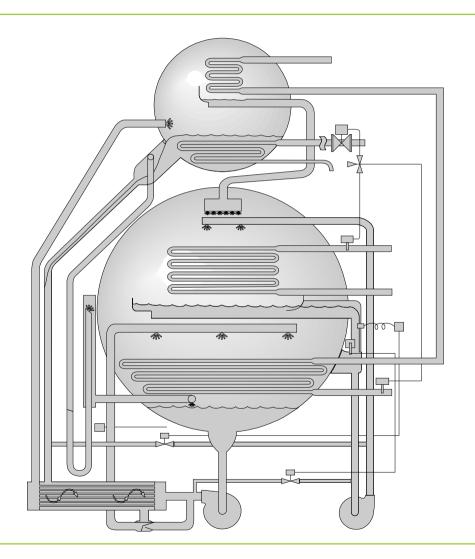
Kältemittel: H₂O

Lösungsmittel: LiBr

Korrosionsinhibitor!

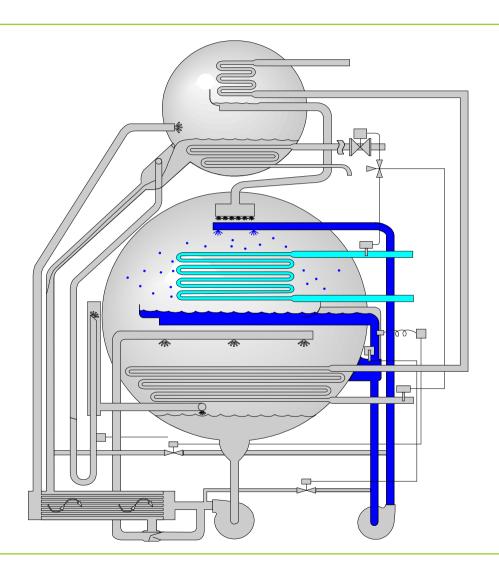
Kälte: > + 4℃

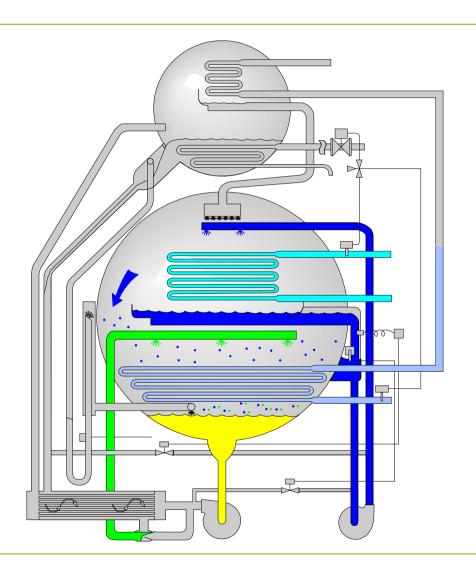
Baugrößen: 35 - 5.000 kW



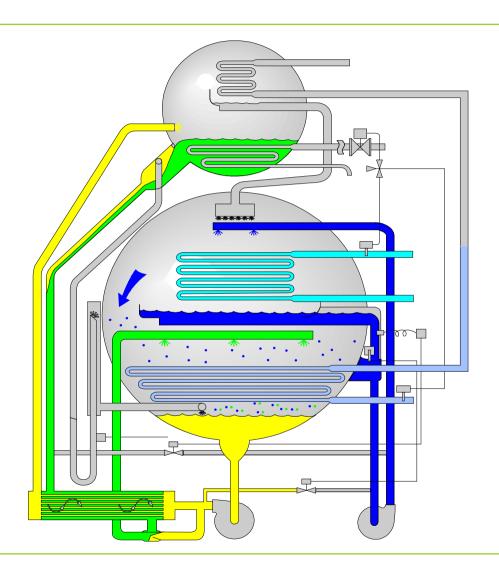
Daten für 1.000 kW (12 / 6℃)

L x B x H: 6,8 x 1,6 x 2,6 m

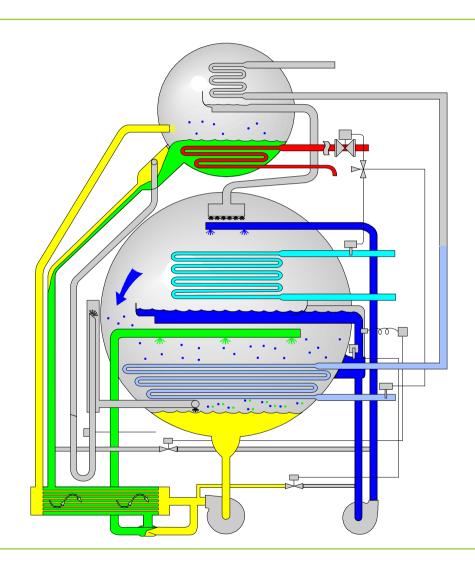

Gewicht: 10.500 kg



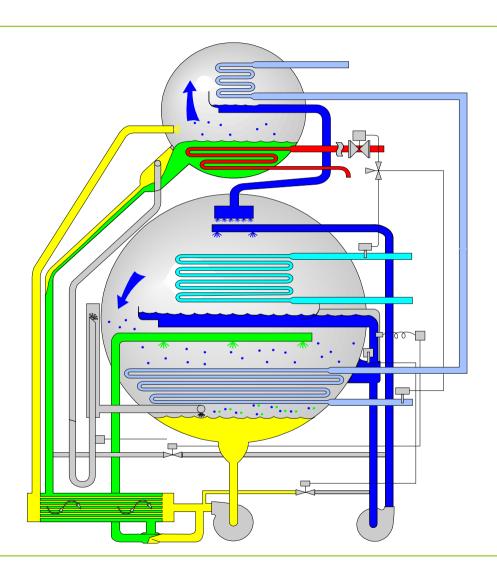
Verdampfer



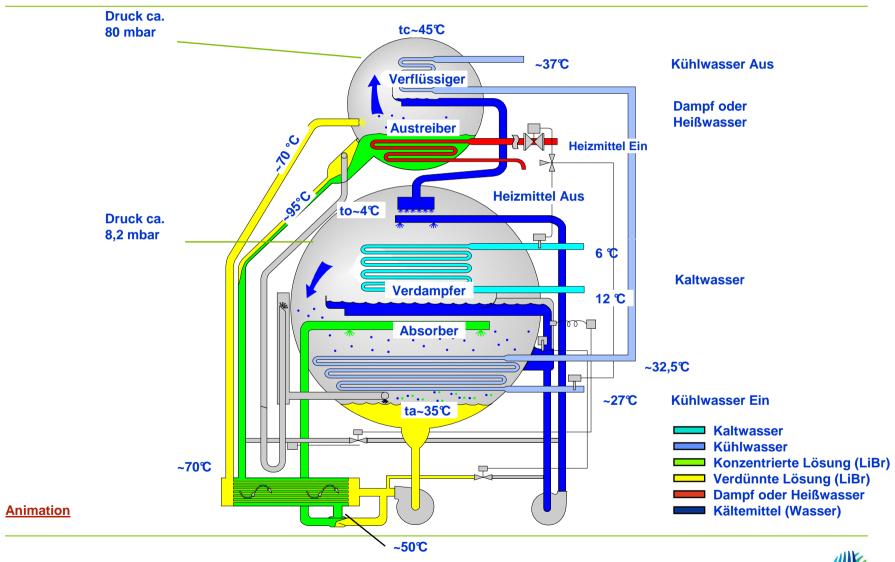
Absorber



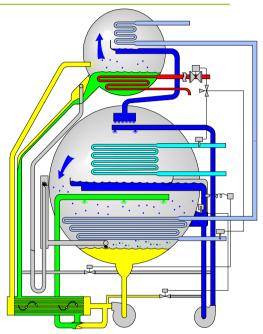
Lösungs-Temperaturwechsler



Austreiber



Verflüssiger



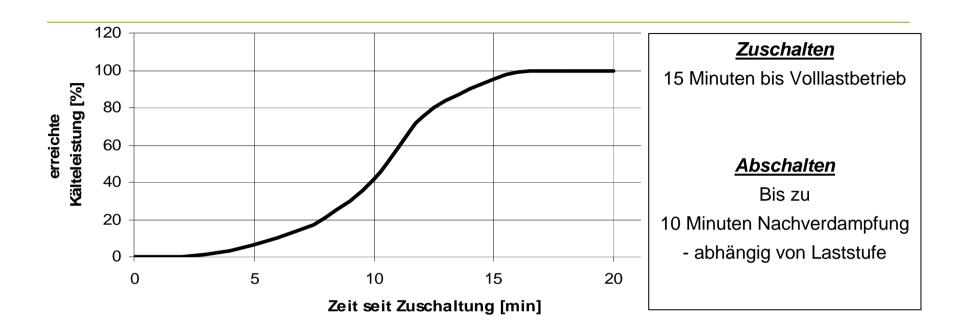
Prozess

Zusammenfassung Arbeitsprinzip

- (1) Verdampfen des Kältemittels (H₂O) unter Wärmeaufnahme
- (2) Aufnahme des Kältemittel Dampfes (H₂O) durch LiBr. Lösung
- (3) Abzug schwache Lösung durch Lösungsmittel-Pumpe zum Austreiber
- (4) Auskochen Kältemittel aus schwacher Lösung durch Heizwasser/-medium
 - => Kältemittel zum Kondensator, Lösungsmittel zurück zum Absorber
- (5) Kondensation Kältemittel Dampf (H₂O) durch Kühlwasser (Kühlturm)
- (6) Abfluss Kältemittel Kondensat (H₂O) zum Verdampfer

Ein Absorber benötigt:

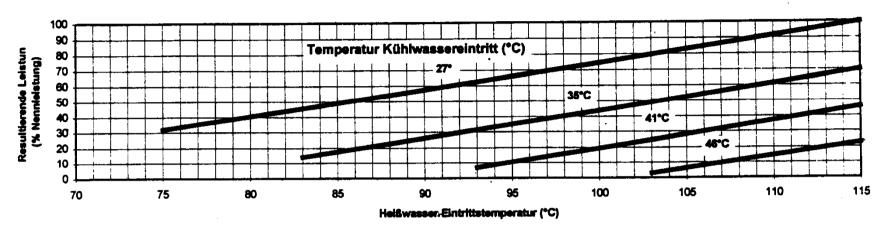
Für Austreiber: Dampf (0 bis 2,5 bar ü) oder Heißwasser (80 − 115℃) (evtl. auch Abgas)


Für Kondensator + Absorber: Kühlwasser ~ 35°C (Abfuhr Heiz-, Aufgenommene- und Lösungswärme)

Für Pumpen und Kühlturmlüfter: Elektrizität

Für das System gilt: Je dichter, je besser! → Fertigungsqualität ist entscheidend!

An- und Abfahren eines Absorbers



- > Das System ist träger als eine Kompressionskälteanlage
- > Hydraulikkreislauf auf träge Regelung auslegen (Speicher oder Temperaturmanagement)
- > Abstimmen auf Wärmequelle (Bereitstellung Verbrauch)

Projektierung einer Absorptionskälteanlage - 1

Kälteleistung

Teillastverhalten:

100 % - 50 %:

COP konstant ~ 0,7 => Bedarf Wärme = Kälteleistung / 0,7

20%:

COP: ~ 0,2

<u>Leistungsregelung</u> über Dampf- / Heißwasserventil am Austreiber (~> Ausgedampfte Kältemittelmenge) (Richtwert: 10 Min. pro 20% Leistungsminderung (Nachverdampfung) – Hochschalten erfolgt schneller)

=> Auslegung der Hydraulik auf träge und stabile (s.u.) Regelung

Projektierung einer Absorptionskälteanlage - 2

Vermeiden von Störungen

Ursachen	Abhilfe		
Stromausfall	Wichtig: Stabile hydraulische Bedingungen!		
Zu kaltes Kühlwasser	⇒ Kühlwasserregelung (3-Wege Beimischregelung)		
	⇒ Keine Außenaufstellung		
Wärmeeintrag im Stillstand	⇒ Abstimmung Profil Wärmequelle / Absorber		
Inertgase	⇒ Absolute Dichtigkeit – saubere Fertigung !		

Substanzen:

NH₃ / H₂O: Einhalten der gängigen Regelungen (~> EN 378: 3.000 kg NH₃ pro Liegenschaft)

H₂O / LiBr: Unbedenklich – kein Gefahrenstoff

Korrosionsinhibitor: Für System Edelstahl – Kupfer – Elektrolyt (Li⁽⁻⁾): Galvanische Korrosion

Aufbau einer mehrstufige Opferschicht (Magnetit) gegen Korrosion

[Korrosion bedeutet: Undichten / Fremdgase, H₂ – Entstehung, Zerstörung]

Wirtschaftlichkeit – Vergleich mit Kompressionskälte Kaltwassererzeugung - 1.000 kW (11℃/5℃)

6.000 h Volllast / Jahr	Absorber	R 134 a	NH ₃	
Elektrizität (€ 0,1 / kWh)	3.000,	146.000,-	100.000,	
Kühlwasser (€ 2, / m³) / 1.000 kW	1.530.000,	1.902.000,-	1.785.000,	
Abwasser (€ 4, / m³) / 1.000 kW	1.020.000,	1.268.000,-	1.190.000,	
Gesamt ohne Wärme (Wärme gratis, -abfuhr erfolgt über Rückkühlkreis)	2.533.000,	3.316.000,-	3.075.000,	
Mit externem Wärmebezug: Wird die für den Absorber bereitgestellte Wörme in iedem Fell				
Wärmebezug (0,03 € / kWh)	252.000,	Wird die für den Absorber bereitgestellte Wärme in jedem Fall (auch ohne Absorber) zurückgekühlt ? – oder wird abgeblasen über Kamin ? – Gibt es Fördermittel ?		
Kühlwasser (1.400 kW)	2.142.000,			
Abwasser (1.400 kW)	1.428.000,			
Gesamt mit Wärme	6.355.000,	3.316.000,	3.075.000,	
Anlagenpreis	€ 150.000,	€ 75.0	00, € 200.000,	

- ⇒ Steht Abwärme zur Verfügung? Ist Kühlwasser günstig verfügbar (Fluss / Brunnen)?
- ⇒ Würde Abwärme ohne Absorber zurückgekühlt werden (oder würde Wärme über Kamin abgeblasen) ?
- ⇒ Wartung: Alle 55.000 h (Haltbarkeit Füllung: Ca. 30 Jahre, abhängig von Fertigungsqualität)

Johnson Controls Systems & Service GmbH

