

Abteilung: Business Development Ind. Ref. Name: Heinz Jackmann Thema: Freie Kühlung 29.09.2009 Seite 1

Inhalt

Wo und bei welchen Temperaturen kann freie Kühlung eingesetzt werden

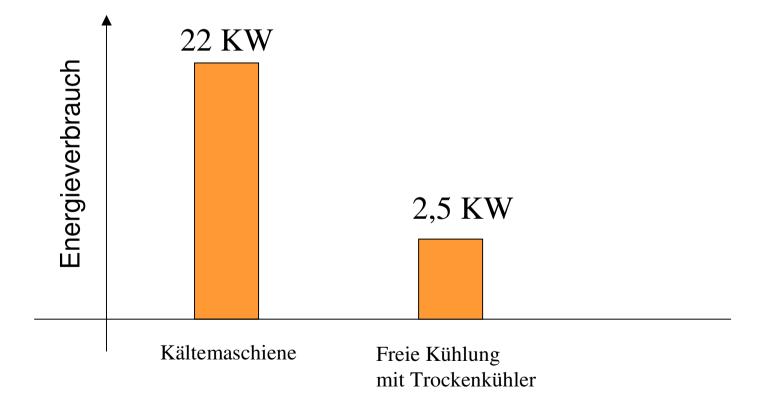
Optimale Einbindung in eine Anlage

Potential der Energieeinsparung in HH

Energieeinsparung durch freie Kühlung für EDV Räume

Beispiel: - Kühlung eines EDV- Raums

- Installation und Temperaturen
- Überschlägige Ermittlung der Energieeinsparung

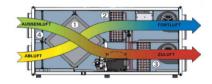

Einleitung: Warum freie Kühlung?

Beispiel: Energieverbrauch für Qo= 100 KW

Kaltwassertemperatur: 15-10°C Umgebungstemperatur: +5°C

Wo kann freie Kühlung eingesetzt werden

Kaltwasser- Kreisläufe

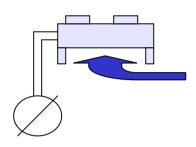


Kühlung des Umlaufwassers mit zusätzlichen Wärmeaustauschern

- Klimaanlagen
- EDV Kühlung
- Prosesskühlung

Lüftungsanlagen

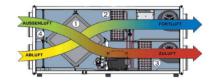
Beimischen von kalter Außenluft in die Zuluft


- Klimaanlagen
- Prosesskühlung

Ab welcher Umgebungstemperatur kann freie Kühlung eingesetzt werden

Bei Wasser- Glykol- Kreisläufen mit direkter Kühlung

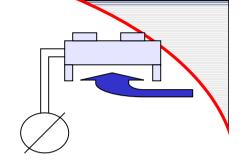
- wenn die Umgebungstemperatur ca. 2K niedriger ist als die Rücklauftemperatur


Bei Kaltwasser- Kreisläufen mit indirekter Kühlung

- wenn die Umgebungstemperatur ca. 2 + 3 = 5K niedriger ist als die Rücklauftemperatur

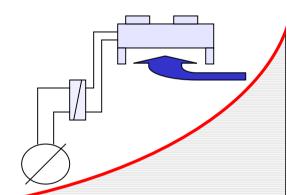
Bei Lüftungsanlagen

- wenn die Umgebungstemperatur niedriger ist als die Temperatur der Zuluft


Ab welcher Umgebungstemperatur kann die freie Küblung in werden

Thema dieses Workshops

Bei Wasser- Glykol- Kreisläufen mit direkter Kühlung


- wenn die Umgebungstemperatur ca. 2K niedriger ist als die Rücklauftemperatur

Bei Kaltwasser- Kreisläufen mit indirekter Kühlung

- wenn die Umgebungstemperatur ca. 2 + 3 = 5K niedriger ist als die Rücklauftemperatur

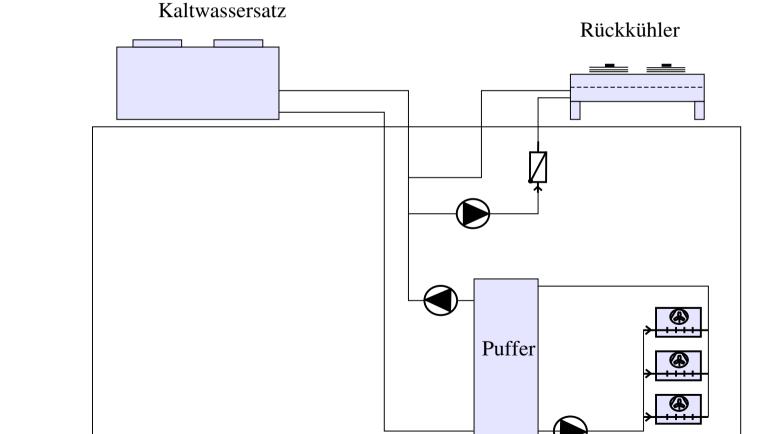
Tel Liftungsanlagen

- wenn die Umgebungstemperatur niedriger ist als die Temperatur der Zuluft

Optimale Einbindung in die Anlage

Einbindung in die Anlage

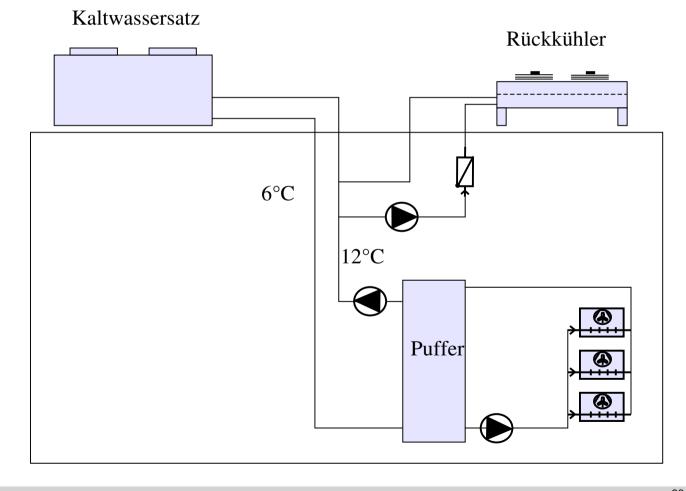
Maximale Energieeinsparung durch:



- Einbindung der freien Kühlung im Flüssigkeitskreislauf dort wo die höchsten Temperaturen sind (Rücklauf)
- Reihenschaltung von freier Kühlung und Kaltwassersatz anstreben

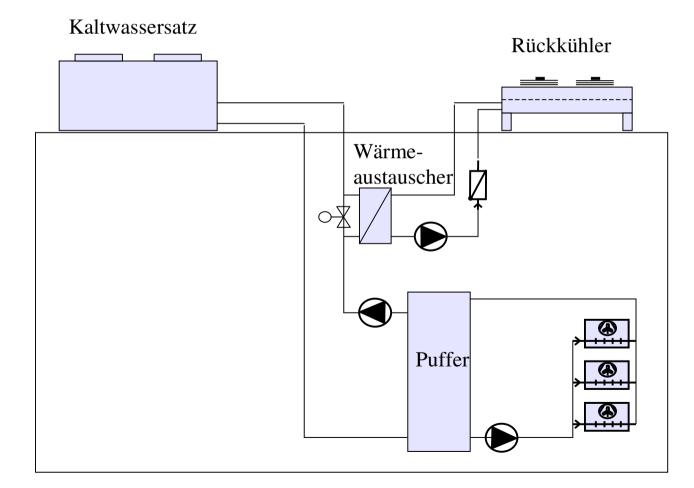
Optimale Einbindung in die Anlage Beispiel: für Flüssigkeitsnetz mit Wasser / Glykol

Direkte Kühlung / Installation ohne zus. Wärmeaustauscher


29.09.2009

Optimale Einbindung in die Anlage Beispiel: für Flüssigkeitsnetz mit Wasser / Glykol

Direkte Kühlung / Installation ohne zus. Wärmeaustauscher



Optimale Einbindung in die Anlage Beispiel: für Kaltwassernetz

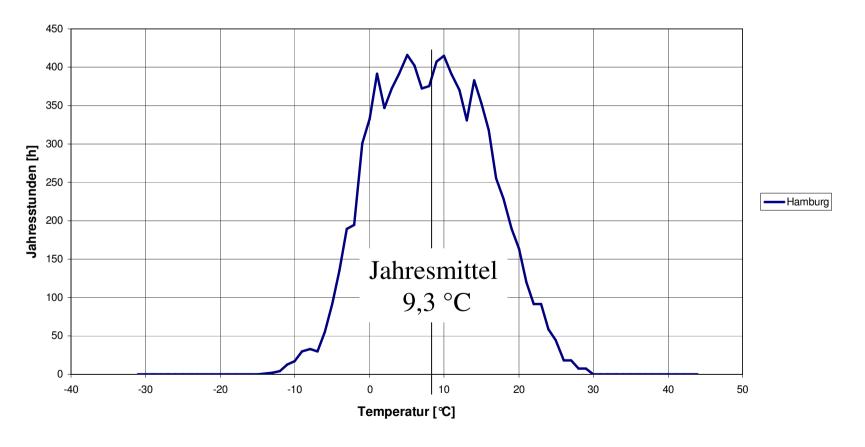
Indirekte Kühlung / Installation mit zus. Wärmeaustauscher

Potential der Energieeinsparung

Potential der Energieeinsparung in HH

Klimakälte oder Prozesskälte?

Parameter für den Einsatz der freien Kühlung?

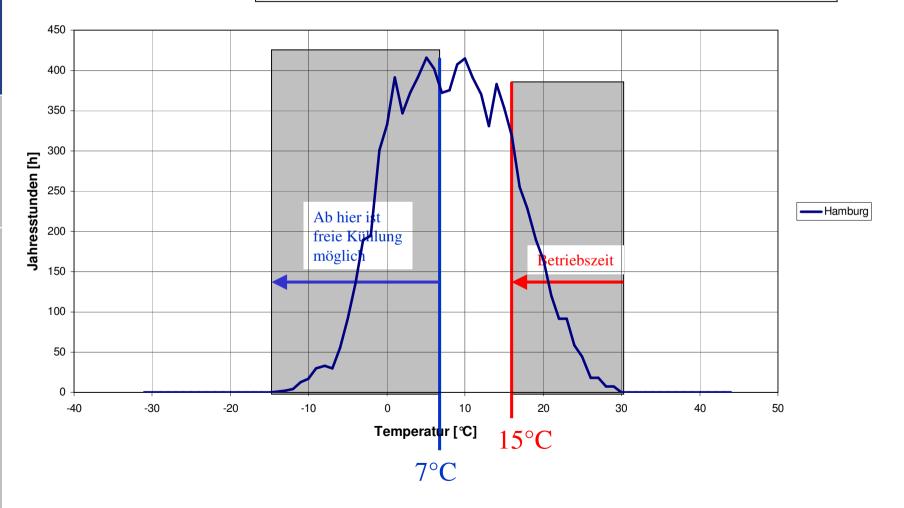

- → Flüssigkeitstemperaturen?
- **→** Umgebungstemperaturen?
- **→** Lastprofil + Laufzeit der Anlage?

Potential der Energieeinsparung in HH

Temperaturhäufigkeitsverteilung

Abteilung: Business Development Ind. Ref. Name: Heinz Jackmann Thema: Freie Kühlung 29.09.2009 Seite 13

Beispiel: Klimaanlage mit Kaltwasser 12 / 6°C Mögliche Betriebsstunden für freie Kühlung

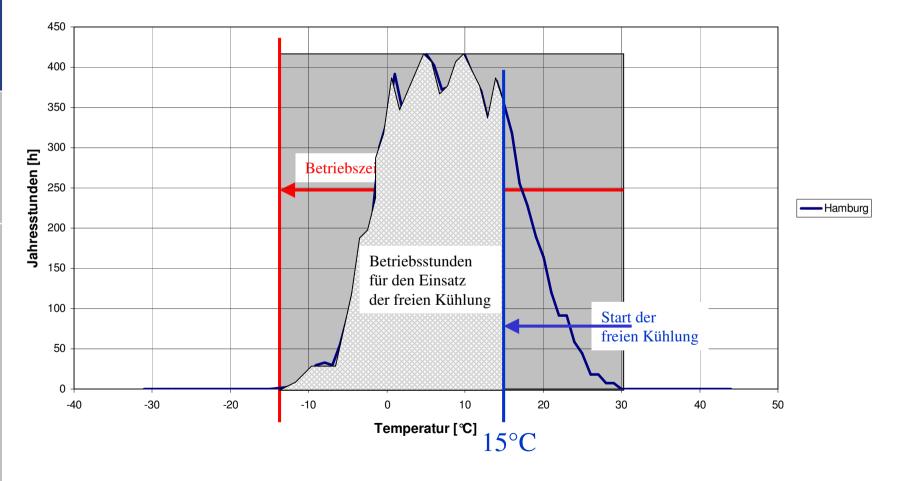


Beispiel: Klimaanlage für Hotel / Büro

Kaltwassertemperatur: 6-12 °C

Betrieb der Klimaanlage: ab ca. 15 °C Außentemperatur

Beispiel: EDV-Klima mit Kaltwasser 20 / 15°C Mögliche Betriebsstunden für freie Kühlung

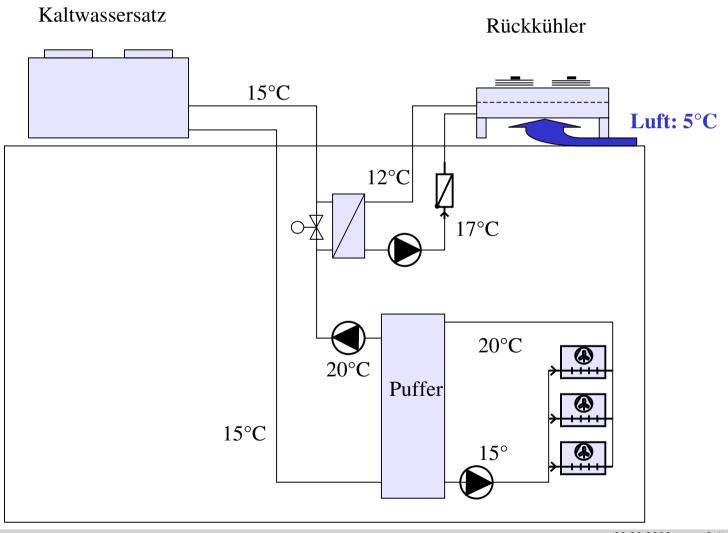


Beispiel: Klimaanlage für EDV (Serverräume)

Kaltwassertemperatur: 15-20 °C

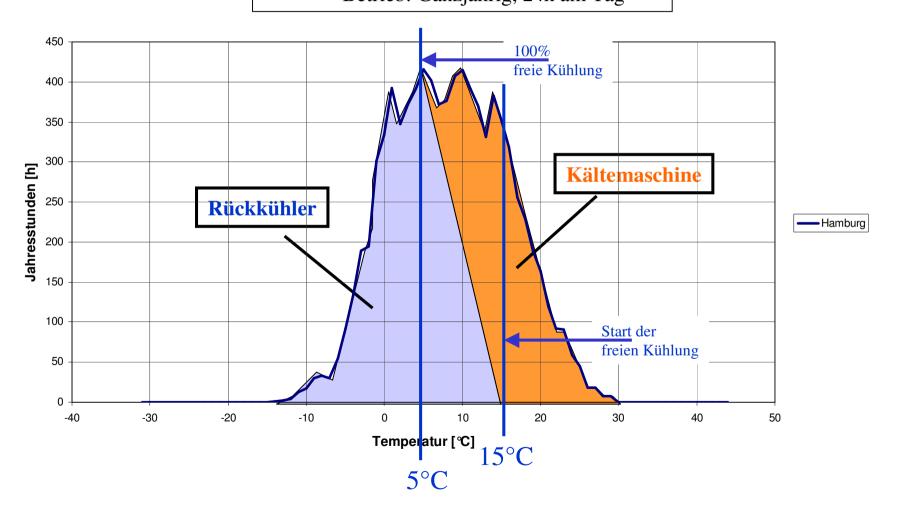
Betrieb: Ganzjährig, 24h am Tag

29.09.2009 Seite 15


Energieeinsparung durch freie Kühlung

Beispiel: Kühlung EDV Raum

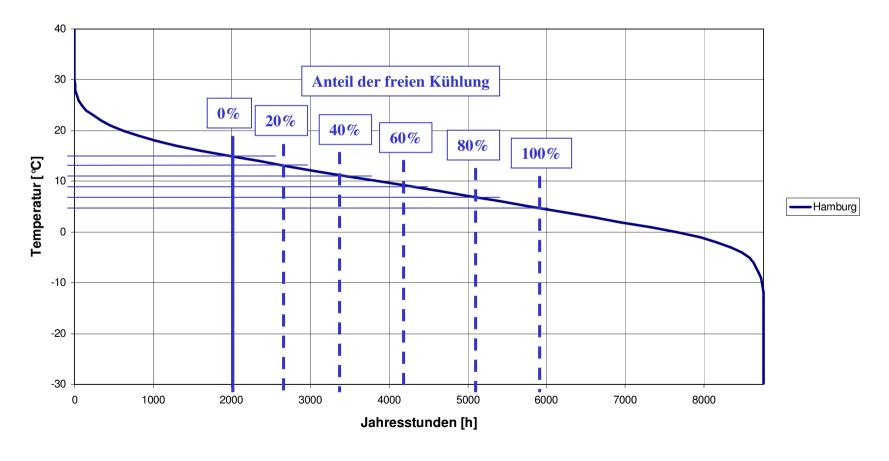
Beispiel: EDV-Klima mit Kaltwasser 20 / 15°C Installation und Betrieb mit freier Kühlung


Beispiel: EDV-Klima mit Kaltwasser 20 / 15°C Installation und Betrieb mit freier Kühlung

Beispiel: Klimaanlage für EDV (Serverräume)

Kaltwassertemperatur: 15-20 °C Betrieb: Ganzjährig, 24h am Tag

Beispiel: EDV-Klima mit Kaltwasser 20 / 15°C Berechnung der Energieeinsparung


Beispiel: Klimaanlage für EDV (Serverräume)

Kaltwassertemperatur: 15-20 °C

Betrieb: Ganzjährig, 24h am Tag

kumulierte Außentemperaturverteilung

e Kühlung 29.09.2009 Seite 19

Energieeinsparung (ca.- Angaben)

Beispiel: Klimaanlage für EDV (Serverräume)

Kaltwassertemperatur: 15-20 °C

Betrieb: 8760h / anno Kälteleistung: 150 KW

Auslastung 80%

		Nur Kältemaschine	Kältemaschine und Rückkühler für freie Kühlung
	Vollaststunden Kältemaschine	8760x0,8= 7008 h	3870x0,8= 3096 h
)	Energieverbrauch Kältemaschine bei Tle = 25°C	34 KW x 7008h = 238.272 KWh	34 KW x 3096h = 105.264 KWh
	Vollaststunden Rückkühler	Nicht vorhanden	4890x0,8= 3912 h
	Energieverbrauch Trockenkühler bei Tle = 25°C		2,8 KW x 3912h = 10.954 KWh
_	Pumpe		1,75 KW x 3912h = 6.846 KWh
	Energieverbrauch	238.272 KWh / Jahr	123.064 KWh / Jahr
	Energieeinsparung		115.208 KWh / Jahr
	Kosteneinsparung bei 0,15€/KWh		17.281 € / Jahr

29.09.2009 Seite 20 Thema: Freie Kühlung

Investition

- → Rückkühler
- → Plattenwärmeaustauscher
- --- Rohrnetz
- -- Regelung

Zusammenfassung

Hohes Einsparpotential

- bei hohen Wassertemperaturen
- bei Betrieb in der Nacht und in der kälteren Jahreszeit

Installation des Wärmeaustauschers für freie Kühlung

- im Rücklauf
- bei Neu- und Bestandsanlagen

Betriebsart

- Reihenschaltung freie Kühlung- Kaltwassersatz anstreben

Mögliche Energieeinsparung

- Abhängig von Temperatur, Betriebszeit und Lastprofil
- Im Beispiel Kühlung von Serverräumen 50% und mehr

Vielen Dank für Ihre Aufmerksamkeit

29.09.2009

Thema: Freie Kühlung

Vielen Dank für Ihre Aufmerksamkeit.

Ihre Ansprechpartner:

Heinz, Jackmann
 Karl Heinz Cramer

• Telefon: +495850 1488 Telefon: +4940 83018296

E-Mail: H.Jackmann@guentner.de E-Mail: H.Jackmann@guentner.de

Anschrift:

Güntner AG & Co. KG

Hans-Güntner-Str. 2 - 6

82256 Fürstenfeldbruck

Deutschland

E-Mail: info@guentner.de

Telefon: +49 8141 242-0

Telefax: +49 8141 242-155