

Seminar Energieeffiziente Kühlung von Rechenzentren

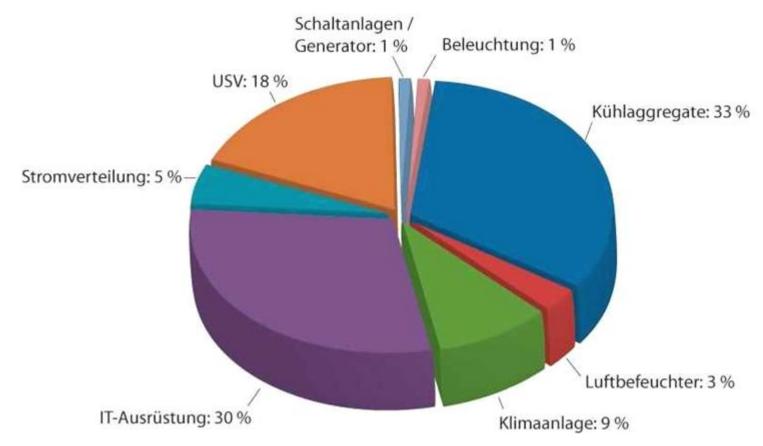
Referent

Dipl. Ing. (Fh) u. Techn. Betriebswirt

Dirk Heidenberger

Agenda

- Unternehmensvorstellung
- Energiebedarf von Rechenzentren früher/ heute
- Merkmale effizienter Serverklimatisierung
- Kaltgang- / Warmgangeinhausung
- Klimatisierung mit Hilfe von Wasser


Das Unternehmen

- IT-Beratungsunternehmen mit den Schwerpunkten Datacenter, Unified-Communication und IT-S.W.A.T.
- Ausgesuchte Experten mit mind. 12 Jahren Berufserfahrung
- Internationale Referenzen im Bereich Banken,
 Versicherungen, Forschung, Industrie, Provider und Behörden
- Aktives Mitglied im Beraterpool für den Serverraumcheck der Behörde für Stadtentwicklung und Umwelt seit April 2010

Wo bleibt die Energie für das Rechenzentrum?

19. April 2011 (Quelle: Green Grid)

Entwicklung der CPU-Rechenleistung

Einsatz	CPU	Clock / Kerne	Cache	Transistoren	Leistung
Server 1999-2002	Intel PIII	1 GHz 1 Kern	256 KB	28 Mio.	26,1 Watt
Heim-PC 2010/2011	Intel Core i7-940	2,93 GHz 4 Kerne	8 MB	731 Mio.	130 Watt
Server 2010/2011	Intel Xeon X5670	2,93 GHz 6 Kerne	12 MB	1170 Mio.	95 Watt

Server aus dem Jahr 2000

Compaq ML 370 PIII 1 GHz ca. 325 Watt (550Watt PSU) auf 5 HE ca. 1.880 BTU/h

Server aus dem Jahr 2011

Dell Power Edge R510 2,93 GHz ca. 480Watt (750Watt PSU) auf 2 HE ca. 1.840 BTU/h

- Standard Serverrack (42HE) mit Server Jahr 2000
 - 42 HE / 5 HE = 8 Stück maximal
 - 8 x 325 Watt = max. 2,6 kW / 15.400 BTU/h
- Standard Serverrack (42HE) mit Server seit 2005
 - 42 HE / 2 HE = (21) Stück maximal (Herstellerabhängig)
 - 42 HE / 2 HE + 1 HE frei = 14 Stück maximal
 - 14 x 480 Watt = max. 6.7 kW / 25.760 BTU/h
- Standard Serverrack (42HE) mit Bladetechnologie
 - 42 HE / 7 HE (Center) * 14 Server = (84) Stück max.
 - 7 x 2,5 kW = 17,5 kW / 67.283 BTU/h

Schranksysteme mit Server (Box-Lösung)

Klimaoptimierte Schrank-Serversysteme

- Deutschland hat 50.000 Rechenzentren mit 1,6 Mio.
 Servern = 32 Server Ø
- EU weit 330.000 / Weltweit 3 Mio. Rechenzentren
- In wenigen Jahren werden laut Gartner die Kosten für Energie eines Servers die Anschaffungskosten überschreiten.

Aktuelles Beispiel:

Server ca. 400Watt/7x24hx4y-Betrieb = ~2.000€ Kosten (14 Cent / kWh)

Gartner Studie aus dem Jahr 2011

- Kernaussage: Zukunftsfähige Rechenzentren brauchen flexible High Density Zonen (>10kW Stromversorgung/ Rack) für dicht bestückte Server Racks.
- 20 30% der Gesamtfläche sollte zukünftig als High Density Zone ausgelegt werden.
 - (Derzeit meist ca. 2 bis 4 kW im Rechenzentrumsdurchschnitt)
- Gartner empfiehlt Racks zu 90 Prozent zu bestücken.
- Prognose: Jedes zweite Rechenzentrum wird in 2015 High Density Zonen haben. (Heute jedes zehnte)

- Fazit
 - Die Geräte werden kleiner und leistungsfähiger
 - Die Anzahl leistungsfähiger Geräte steigt an
 - Die Leistung pro Fläche steigt permanent
 - Die Anforderungen an die Klimatisierung wachsen

- Serverracks aus dem Jahr 2000 (42 HE)
 - Meist geschlossene Schranktüren hinten
 - Kleine Lüftungsschlitze in der Frontscheibe

Ältere Serverracks mit perforierter Racktür

Serverracks mit durchlassoptimierter Racktür

11 Green-IT Best Practises

- Verschluss der Öffnungen im Doppelboden
- Blenden für Rack-Einschübe
- Strömungsoptimierung im Doppelboden (Kabel, ...)
- Kalt- und Warmluftgänge
- Abgeschlossene Kalt-/Warmluftgänge
- Modulare Kühlung im Rack oder der Rackreihe
- Höhere Temperaturen (26,6 Grad ASHRAE/ 24 Grad)
- Kühlungs- und Feuchtigkeitsregelung
- Sensoren in kritischen Bereichen
- Regelbare Pumpen und Ventilatoren
- Freie Kühlung

DataCenter2020 T-Systems Intel

Bei einer konstanten Last von fünf Kilowatt pro Rack sank der Energieverbrauch im DataCenter 2020 nach der Einhausung um 19 Prozent. Grafik: Emerson

ASHRAE:

Wasservorlauf 24°C.

Serveransaugtemperatur 27°C

Dienstag, 19. April 2011 (Quelle: Emerson)

Kaltgangtüren

step 1:

step 2:

- Studien besagen: 10% der gesamten Klimaenergie geht durch Verluste im Doppelboden verloren ...
- 10% Luftverluste entsprechen ca. 5% der Gesamtenergiekosten im Rechenzentrum (siehe GreenGrid Energieverbrauchsdiagramm)

Einfacher Verschluss des Doppelbodens mit Clima-Tect

Solche Verschlüsse sind sonst eine Herausforderung!

• Wie sieht die Luftführung meist im Doppelboden aus???

Doppelböden mit und ohne Kabelmanagement

Verkabelung von Oben (Top of Rack)

Verkabelung auch ohne Doppelboden!

Häufige Verkabelungsstrategie früher:

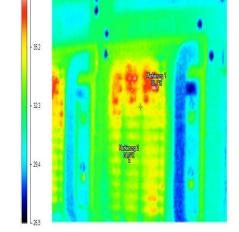
Kabelreserven auf den Kabelarmen!

Bei alten Servern kein Problem, da alte Serverkabelarme meist massiv und Server höher (z.B. 5HE) als Arme (2HE).

Heutige Anforderungen haben sich geändert

Server benötigen hohen Luftdurchfluss!

So nicht!



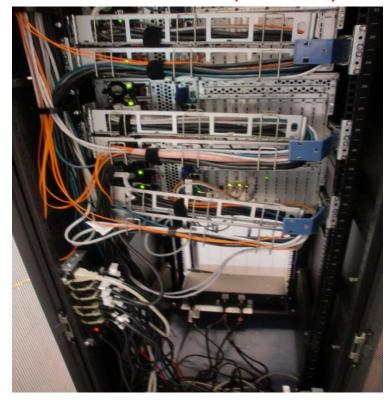
Hinweis: Neueste Server mit FCoE-Technologie werden meist nur noch mit ein oder zwei Datenkabeln und mit ein oder zwei Stromkabeln angeschlossen.

Sind Blindplatten innerhalb der Racks auch bei kleinen Öffnungen zwischen den Servern notwendig?

Ohne Blindplatten sind Klimakurzschlüsse an offenen Höheneinheiten möglich! **Luft dringt von hinten nach vorn zurück (Papiertest)**

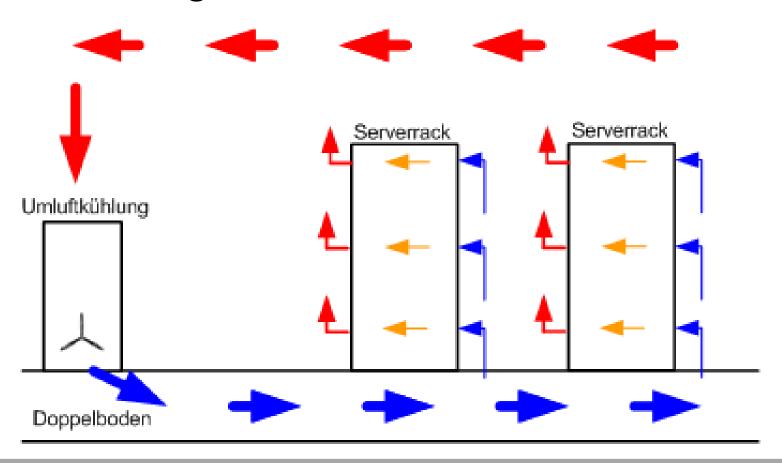
©Unified Competence Dienstag, 19. April 2011 Seite 25

- Fazit
 - Auch kleine, einfache Maßnahmen bringen einen hohen Einsparungsnutzen.
 - Kabelverlegung
 - Isolierung des Doppelbodens
 - Blindplatten
 - Lüftungsregelung
 - ...

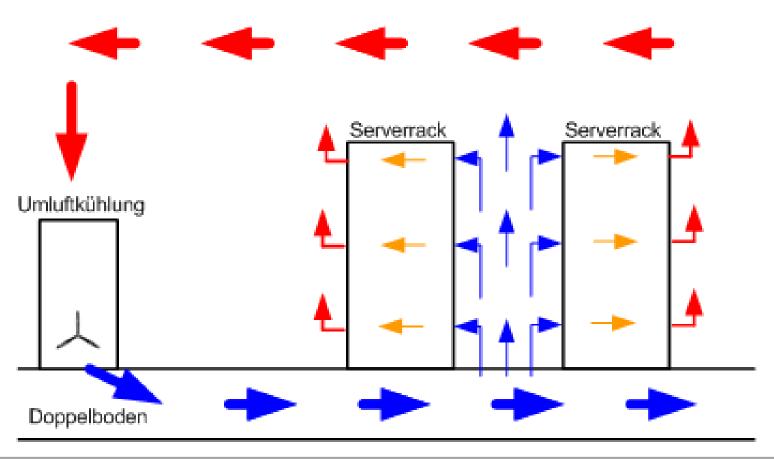


Rechenzentrumsansicht

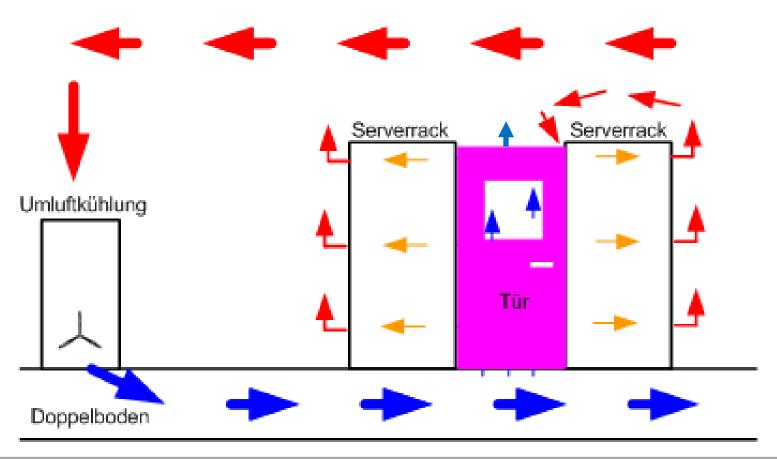
Kalte Rackseite (Front)



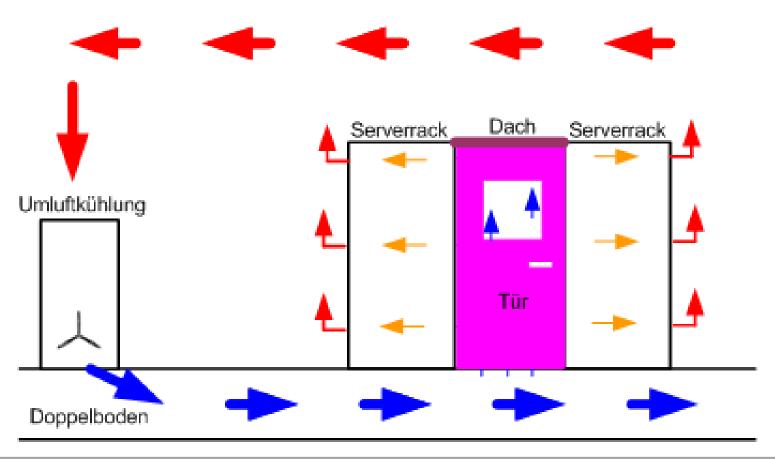
Warme Rackseite (Rückseite)



Rackanordnung in älteren Rechenzentren



Kaltgang / Warmgangprinzip


Kaltgangabschottung mit Türen (Cool-Pool)

Dienstag, 19. April 2011 ©Unified Competence Seite 30

Kaltgangeinhausung

							. 72			- 3
Klimatisierungs- methode	Schematische Darstellung	Vorgesehener Leistungsbereich	Einsatz (Low Density) < 4 kW/Rack		Einsatz (Medlum Density) 4–8 kW/Rack		Einsatz (High Density) 8-12 kW/Rack		Einsatz (High Density) > 12 kW/Rack	
Klimatisierung über den Doppelboden ohne Ordnung der Racks aus lüftungstech- nischer Sicht	< 1000 Wint < 4 kW.Ruck	< 1000 W/m² < 4 kW/ Rack	Einsatz ja	Energie- effizienz	Einsatz be- schränkt	Energie- effizienz	Einsatz nein	Energie- effizienz	Einsatz nein	Energie- effizienz
Klimatisierung über den Doppelboden und Ordnung der Racks in kalte/warme Gänge	C 2000 Wint Cli kWitash	< 1500 (2000) W/m² < 6 (8) kW/Rack	Einsatz ja	Energie- effizienz	Einsatz ja (höchste Disziplin)	Energie- effizienz	Einsatz nein	Energie- effizienz	Einsatz nein	Energie- effizienz
Klimatisierung über den Doppel- boden und Einhausung der Kaltgänge	<20 kW/flack	1000 bis 4000 W/m² 4 bis 12 kW/Rack	Einsatz nicht not- wendig	Energie- effizienz	Einsatz ja	Energie- effizienz	Einsatz ja	Energie- effizienz	Einsatz be- schränkt	Energie- effizienz

19. April 2011 (Quelle: Schäfer IT-Systeme)

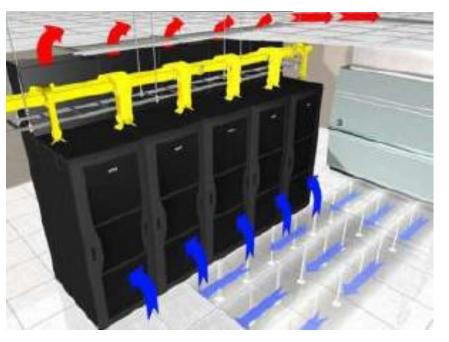
Warmgangeinhausung

- Meist nur mit In-Row-Cooling sinnvoll einsetzbar, da sonst größere Umbaumaßnahmen erforderlich. (Luftführung, Abschottung, ...)
- Bietet den Vorteil, dass auch nicht in der Einhausung stehende Geräte gekühlt werden können.

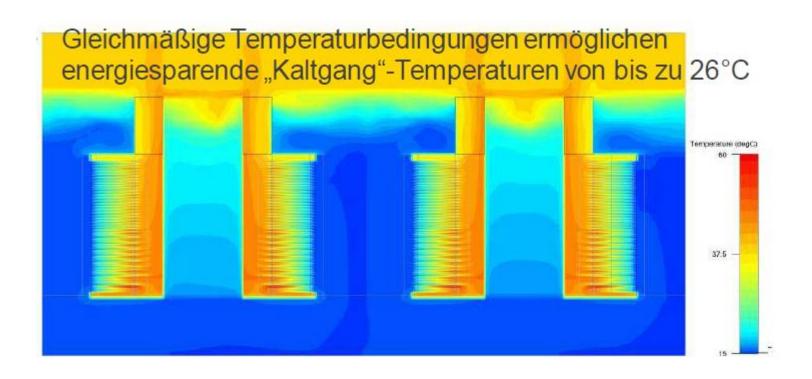
Komplette Einhausung

Dienstag, 19. April 2011 (Quelle: ZPAS)

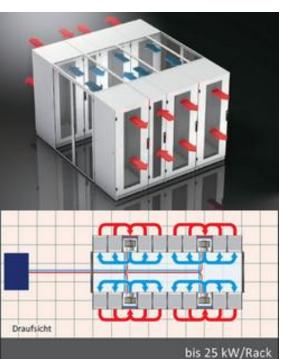
Daxten Cool Control Curten


Dienstag, 19. April 2011 (Quelle: Daxten)

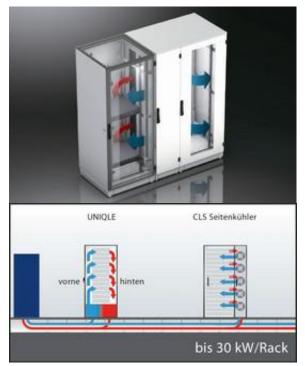
Klimatisierung mit Nutzung der Zwischendecke



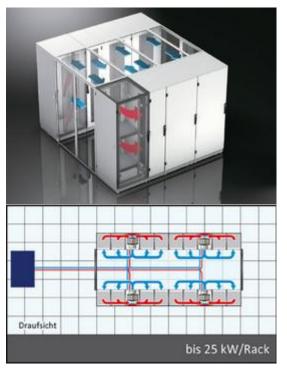
Klimatisierung mit Nutzung der Zwischendecke


Dienstag, 19. April 2011 (Quelle: Panduit)

Klimatisierung mit Wasser



Klimatisierung mit Wasser


Open Loop

Uniqle

Closed Loop

Klimatisierung mit Wasser

Klimatisierungs- methode	Schematische Darstellung	Vorgesehener Leistungsbereich	Einsatz (Low Density) < 4 kW/Rack		Einsatz (Medlum Density) 4–8 kW/Rack		Einsatz (High Density) 8-12 kW/Rack		Einsatz (High Density) > 12 kW/Rack	
Wassergekühlte Klimatisierung ohne Doppel- boden und Einhausung der Kaltgänge		4 bis 25 kW/Rack	Einsatz nicht not- wendig	Energie- effizienz	Einsatz ja	Energie- effizienz	Einsatz ja	Energie- effizienz	Einsatz ja	Energie- effizienz
Klimatisierung mit wasser- gekühlten Racks (geschlossenes System)	Minuselle Perlament	8 bis 30 kW/Rack	Einsatz nicht not- wendig	Energie- effizienz	Einsatz ja	Energie- effizienz	Einsatz ja	Energie- effizienz	Einsatz ja	Energie- effizienz

www.UNIFIED-COMPETENCE.com Schmetterlingsweg 14 25482 Appen

Tel. 04101 / 216 – 132 info@unified-competence.com