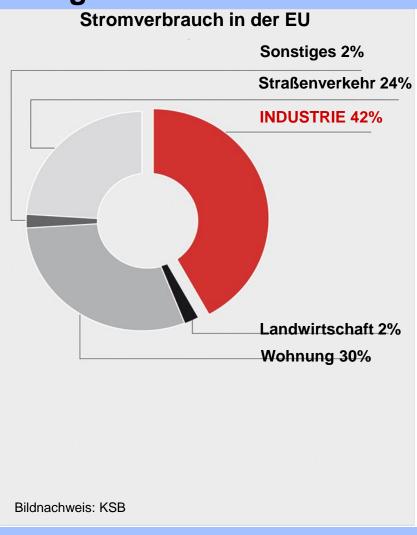
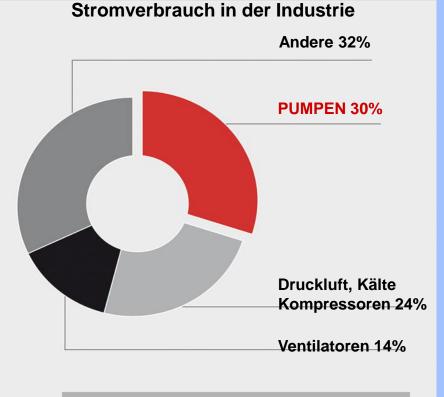
Grundlagen der Hydraulik – Schulung am 16.11.2012

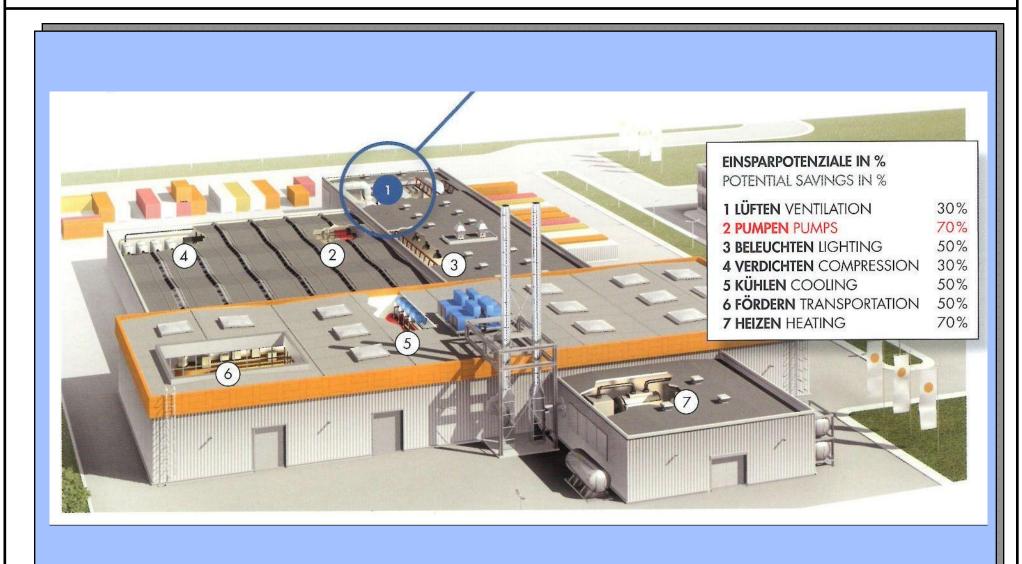



Dipl.- Ing. Christoph Brandt KLIMAhaus Klima- und Gebäudetechnik GmbH

Bedeutung des Themas Hydraulik

Energieeffizienz - das zentrale Thema des 21. Jahrhunderts

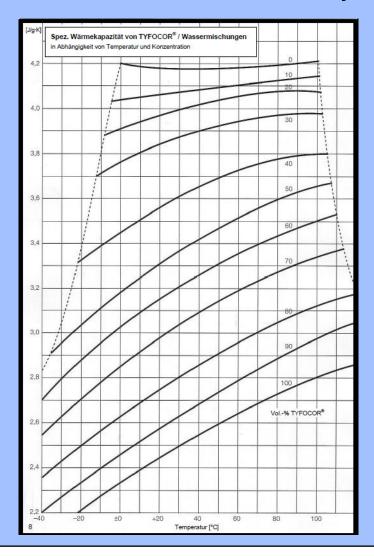
Stromverbrauch


Die Industrie verbraucht mit Abstand am meisten elektrische Energie.

Innerhalb der Industrie sind die Pumpen die größten Energieverbraucher.

Bedeutung des Themas Hydraulik

Bildnachweis: Imtech


Grundlagen zur Hydraulik - Energietransport

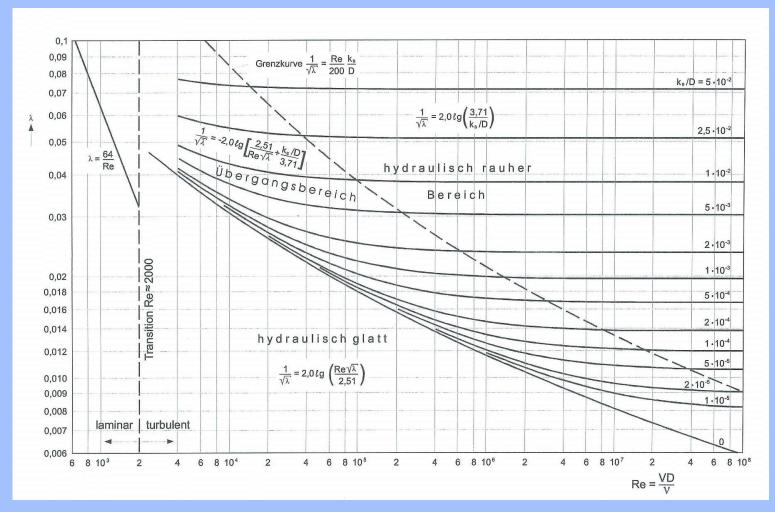
Größe:	Formeln zum E	Energietransport	
	Formel- zeichen	Einheit	Berechnungsformel
Wärmeleistung	\dot{Q}	W	$\dot{Q} = \dot{m} \times c \times \Delta \mathcal{G}$
Massenstrom	m ·	kg/s	$m = V \times \rho = A \times v \times \rho$
Spez. Wärmekapazität	C	$J/(kg \times K)$	Wasser 20 °C; 4.190 J/(kg x K); Ethylenglykol 40/60%; 20 °C; 3.560 J/(kg x K)
Fließ geschwindigkeit	ν	m/s	$v = \frac{\dot{V}}{A} = \frac{\dot{m}}{\rho \times A} = \frac{4 \times \dot{m}}{\rho \times d_i^2 \times \pi}$
Volumenstrom	\dot{V}	m^3/h	$\dot{V} = \frac{\dot{m}}{\rho} = A \times v$
Rohrquerschnitt	A	m ²	$A = \frac{\pi}{4} \times d_i^2$
Dichte	ρ	kg/m³	$\rho = \frac{\dot{m}}{\dot{V}}bzw \frac{m}{V}$

Grundlagen zur Hydraulik - Energietransport

Spez. Wärmekapazität von Wasser- / Ethylenglykolgemischen:

Bildnachweis: Tyfo

Grundlagen zur Hydraulik – Rohrnetz (geschl. System)


Größe:		Formeln zur Rohrnetzberechnung						
	Formel- zeichen	Einheit	Berechnungsformel					
Rohrreibung (inkompressible Medien)	Δ_{pR}	$N/m^2 = Pa$	$\Delta_{pR} = \lambda \times \frac{l}{d_i} \times \frac{\rho}{2} \times v^2 = R$					
Rohrreibungszahl (laminare Strömung)	λ	-	$\lambda = \frac{64}{R_e}$ (laminare Strömung bei Rohrströmung praktisch nicht relevant)					
Reynolds-Zahl Re ≤ 2.320 → laminar ≥ 2.320 → turbulent	R_{e}	-	$R_e = \frac{v \times d_i}{v}$					
kinematische Viskosität	υ	m^2/s	Tabellenwert, z.B. Wasser 20° C:1, 006×10 ⁻⁶					
Rohrreibungszahl (turbulente Strömung)	λ	-	$\lambda = f \; (\; R_{e} \;\; , d / k \;)$ div. Berechungsansätze, besser: Colebrook-Diagramm					
Rohrreibung (vereinfachte Ermittlung)	Δ_{pR}	Pa	$\Delta_{pR} = R \times l$					

Grundlagen zur Hydraulik – Rohrnetz

Moody-Colebrook-Diagramm

Moody-Diagramm: Reibungsbeiwerte für Rohrleitungsströmungen als Funktion der Reynoldszahl Re und relativen Rauheit k_s/D

Grundlagen zur Hydraulik – Rohrnetz

Nahtloses Stahlrohr nach DIN 2448 (k = 0,045 mm, t = 60 °C)

Rohrreibungstabelle (Beispiel)

DN	40)	50	1	65		80		10	0	12	5	15	0
d _i (mm)	43,	1	51,	2	70,	3	82,	5	100	.8	12	5	15	0
R (Pa/m)	kg/h	m/s	kg/h	m/s	kg/h	m/s	kg/h	m/s	kg/h	m/s	kg/h	m/s	kg/h	m/s
5	604	0,12	965	0,13	2273	0,17	3497	0,18	5987	0,21	10650	0,25	17327	0,28
10	891	0,17	1420	0,19	3332	0,24	5118	0,27	8745	0,31	15522	0,36	25210	0,40
15	1117	0,22	1776	0,24	4160	0,30	6382	0,34	10892	0,39	19312	0,44	31335	0,50
20	1309	0,25	2080	0,29	4864	0,35	7458	0,39	12718	0,45	22530	0,52	36534	0,58
25	1479	0,29	2349	0,32	5489	0,40	8411	0,44	14335	0,51	25379	0,58	41133	0,66
30	1634	0,32	2595	0,36	6056	0,44	9277	0,49	15803	0,56	27964	0,64	45305	0,72
35	1778	0,34	2821	0,39	6580	0,48	10076	0,53	17157	0,61	30347	0,70	49150	0,79
40	1912	0,37	3032	0,42	7069	0,51	10821	0,57	18420	0,65	32570	0,75	52736	0,84
45	2038	0,39	3232	0,44	7529	0,55	11523	0,61	19609	0,69	34661	0,80	56108	0,90
50	2158	0,42	3420	0,47	7965	0,58	12188	0,64	20735	0,73	36642	0,84	59302	0,95
55	2272	0,44	3600	0,49	8381	0,61	12821	0,68	21807	0.77	38528	0,89	62343	1,00
60	2381	0,46	3773	0,52	8778	0,64	13427	0,71	22833	0,81	40333	0,93	65252	1,04
65	2486	0,48	3938	0,54	9160	0,67	14009	0,74	23818	0,84	42064	0,97	68044	1,09
70	2587	0,50	4098	0,56	9528	0,69	14570	0,77	24767	0,88	43732	1,01	70732	1,13
75	2685	0,52	4252	0,58	9884	0,72	15111	0,80	25683	0,91	45343	1,04	73327	1,17
80	2779	0.54	4401	0,60	10228	0.74	15635	0.83	26570	0.94	46901	1.08	75839	1,21
85	2871	0,56	4546	0,62	10561	0,77	16143	0,85	27430	0,97	48413	1,11	78274	1,25
90	2961	0,57	4686	0,64	10886	0,79	16637	0,88	28265	1,00	49881	1,15	80640	1,29
95	3047	0,59	4823	0,66	11201	0,82	17118	0,90	29078	1,03	51310	1,18	82942	1,33
100	3132	0,61	4957	0,68	11509	0,84	17586	0,93	29871	1,06	52702	1,21	85185	1,36
105	3215	0,62	5087	0,70	11809	0,86	18043	0,95	30644	1,08	54061	1,24	87374	1,40
110	3296	0,64	5214	0,72	12102	0,88	18490	0,98	31399	1,11	55387	1,28	89511	1,43
115	3375	0,65	5339	0,73	12389	0,90	18926	1,00	32138	1,14	56685	1,31	91602	1,46
120	3452	0,67	5461	0,75	12670	0,92	19354	1,02	32861	1,16	57955	1,33	93647	1,50
125	3528	0,68	5580	0,77	12945	0,94	19773	1,05	33569	1,19	59199	1,36	95651	1,53
130	3602	0,70	5697	0,78	13215	0,96	20184	1,07	34263	1,21	60419	1,39	97616	1,56

Grundlagen zur Hydraulik – Rohrnetz

Nahtloses Stahlrohr nach DIN 2448 (k = 0,045 mm, t = 60 °C) Rohrreibungstabelle (Beispiel)

DN	40	40 50		65	65 80			100		125	5	150		
d _i (mm)	43,	1	51,	2	70,	3	82,	5	100	.8	12	5	150)
R (Pa/m)	kg/h	m/s	kg/h	m/s	kg/h	m/s	kg/h	m/s	kg/h	m/s	kg/h	m/s	kg/h	m/s
135	3675	0,71	5812	08,0	13480	0,98	20587	1,09	34945	1,24	61616	1,42	99544	1,59
140	3747	0,73	5925	0,81	13740	1,00	20982	1,11	35614	1,26	62791	1,45	101437	1,62
145	3818	0,74	6036	0,83	13995	1,02	21371	1,13	36271	1,28	63946	1,47	103297	1,65
150	3887	0,75	6145	0,84	14246	1,04	21754	1,15	36918	1,31	65081	1,50	105125	1,68
155	3955	0,77	6253	0,86	14493	1,05	22130	1,17	37554	1,33	66198	1,52	106923	1,71
160	4022	0.78	6358	0,87	14737	1,07	22500	1,19	38180	1,35	67297	1,55	108693	1,74
165	4088	0,79	6462	0,89	14976	1,09	22864	1,21	38796	1,37	68379	1,57	110436	1,77
170	4153	0,80	6565	0,90	15212	1,11	23224	1,23	39403	1,40	69445	1,60	112153	1,79
175	4218	0,82	6666	0,91	15445	1,12	23578	1,25	40001	1,42	70495	1,62	113845	1,82
180	4281	0,83	6766	0,93	15674	1,14	23927	1,26	40591	1,44	71532	1,65	115513	1,85
185	4343	0.84	6864	0,94	15901	1,16	24271	1,28	41173	1,46	72554	1,67	117158	1,87
190	4405	0,85	6961	0,96	16124	1,17	24611	1,30	41748	1,48	73562	1,69	118782	1,90
195	4466	0,86	7057	0,97	16344	1,19	24946	1,32	42314	1,50	74557	1,72	120384	1,92
200	4526	0,88	7152	0,98	16562	1,21	25277	1,34	42874	1,52	75540	1,74	121966	1,95
210	4644	0,90	7337	1,01	16989	1,24	25928	1,37	43973	1,56	77469	1,78	125073	2,00
220	4760	0,92	7519	1,03	17407	1,27	26563	1,40	45047	1,59	79354	1,83	128107	2,05
230	4872	0,94	7696	1,06	17815	1,30	27184	1,44	46096	1,63	81196	1,87	131073	2,10
240	4983	0,96	7870	1,08	18215	1,33	27792	1,47	47123	1,67	82999	1,91	133976	2,14
250	5091	0,99	8040	1,10	18606	1,35	28387	1,50	48130	1,70	84766	1,95	136820	2,19
260	5197	1,01	8207	1,13	18990	1,38	28971	1,53	49116	1,74	86498	1,99	139608	2,23
270	5301	1,03	8371	1,15	19366	1,41	29544	1,58	50084	1,77	88197	2,03	142343	2,28
280	5403	1,05	8532	1,17	19736	1,44	30106	1,59	51034	1,81	89865	2,07	145028	2,32
290	5504	1,07	8690	1,19	20100	1,46	30659	1,62	51968	1,84	91503	2,11	147666	2,36
300	5603	1,08	8845	1,21	20457	1,49	31202	1,65	52886	1,87	93114	2,14	150259	2,40

Folie Nr. 9 von 30

Grundlagen zur Hydraulik - Rohrnetz

Größe:	Formeln zur Rohrnetzberechnung								
	Formel- zeichen	Einheit	Berechnungsformel						
Druckverlust durch Einzelwiderstände	Z	Pa	$Z = \sum \zeta \times \frac{\rho}{2} \times v^2$						
Einzelwiderstände	$\sum \zeta$	-	Addition aller Einzelwiderstände je TS						
Druckverlust gesamt	Δ_{pges}	Pa	$\Delta_{pges} = \Delta_{pR} + Z$						
Druckverlust über kvs-Wert (Ventile)	Δ_{pv}	kPa	bei bekanntem kvs-Wert $\Delta_{pv} = \left[\frac{Q \left[m^3/h \right]}{kvs} \right]^2 \times 100$						
Druckverlust aus geodätischer Höhe	$oxedsymbol{\Delta}_{pgeo}$	m	$\Delta_{pgeo} = \rho \times h_{geo} \times g$ (bei geschlossenen Systemen nicht relevant)						

Folie Nr. 10 von 30

Grundlagen zur Hydraulik - Rohrnetz

Druckverluste durch Einzelwiderstände

Tafel 1.4.8-1	Widerstandsbeiwerte ζ _u von Rohrleitungsteilen ¹)						
	Weitere Werte in Abschn. 2.2.2 s. S. 675 und 3.3.5 s. S. 1409						

Teil	Darstellung	Widerstandsbeiwert ζ _ν	Druckverlust ∆p in N/m²
Bogen 90° glatt r/d = 0,5 1,0 2,0 3,0	‡ %	1,0 0,35 0,20 0,15	(Umlenkverlust) $\Delta p = \zeta_w \cdot \frac{\varrho}{2} w^2$
Knie $\beta = 90^{\circ}$ 60° 45°	w Zs	1,3 0,8 0,4	$\Delta p = \zeta_{\alpha} \frac{Q}{2} w^2$
Erweiterung, rund stetig $\beta = 10^{\circ}$ (in einem 20° langen 30° Rohr) 40°	W1 38	$A_1/A_2 = 0.5$ 0,25 $\zeta_1^2) = 0.12$ 0,24 0,17 0,37 0,21 0,46 0,27 0,60	$\Delta p = \zeta_1 \frac{\varrho}{2} w_1^2$
plötzlich (Borda-Carnot) Ausströmung	셨 <u>국 4</u> **=	$\zeta_1 = \left(1 - \frac{A_1}{A_2}\right)^2$ $\zeta_1 = 1,0$	$\Delta p = \zeta_1 \frac{\varrho}{2} w_1^2$ $\Delta p = \frac{\varrho}{2} w_1^2$
Verengung, stetig β = 20···90°	н, → В, → н,	$A_2/A_1 = 0.2$ $\zeta_2 = 0.08$ 0.4 $0.080.6$ $0.060.8$ 0.02	$\Delta p = \zeta_2 \frac{\varrho}{2} w_2^2$
plōtzlich	w ₁ + w ₂	$\zeta_2 = (1/\alpha - 1)^2$. $(1 - A_2/A_1)$	$\Delta p = \zeta_2 \frac{Q}{2} w_2^2$ Kante:
Einströmung	→ <u> </u>	$\zeta_2 = (1/\alpha - 1)^2$	scharf ³) $\alpha = 0.59$ gebrochen $\alpha = 0.79$ gerundet $\alpha = 0.99$ düsenförmig $\alpha = 0.99$
Blende, scharfkantig	-+ (2) 1A ₀ + -+ (1A ₀ A ₂ +	$\zeta = \left(\frac{A}{\alpha A_0} - 1\right)^2$ $\zeta_2 = \left(\frac{A_2}{\alpha A_0} - 1\right)^2$	$\Delta p = \zeta \frac{\varrho}{2} w^2$ $\Delta p = \zeta_2 \frac{\varrho}{2} w_2^2$
Abzweigung, scharfkantig $w_2/w_1 = 0.5$ 1.0 2.0 3.0	ν	β=90° 60° 45° 4,5 3,1 2,0 1,5 0,77 0,43 0,74 0,47 0,45 0,62 0,58 0,54	$\Delta p = \zeta_2 \cdot \frac{\varrho}{2} w_2^2$
Querwiderstand a/b = 0,10 0,25 0,50	<u>₩</u> _(ao o b	0,7 0,2 0,07 1,4 0,55 0,23 4,0 2,0 0,9	$\Delta p = \zeta \frac{Q}{2} w^2$

Rietschel-Raiss 1970. – Eck: Technische Strömungslehre Bd.1. 1978. Bd.2. 1981. – Richter, H.; Rohrhydraulik 1962. – Stradtmann: Stahlrohr-Handbuch 1982. – Idel'chik-Handbuch 1966. – Gersten, K.: Einführung in die Strömungsmechanik 1974. – Kalide, W.: Techn. Strömungslehre 1976 u. FLT-Handbuch 1988.

Teil	Bild		ζ ₀ -Wer	t bei DN	N
Ten	Bild	25	50	100	200 mi
Kugelhahn	→ 🗗 ←	. 0	<u></u>		0
Absperrklappe	→ ⓑ ←	-	0,8 ; 1,5	0,27 : 0,4	0,15 : 0,3
Absperrventile Normalventil	→ \$\overline{P}\$	5,9	3,7	4,9	5,5
mit Faltenbalg und Standardkegel Durchgang Eckventil	→ 💆 📮	5,7	4,9 4,5	5,5 4,5	5,8 6,0
mit Faltenbalg und Drosselkegel Durchgang Eckventil	→ ₽ ‡	13 12	11 10	19 18	12 11
Schieber ohne Leitrohr mit Leitrohr	→ 1		0,2 0,1		0,30 0,15
Rückschlagklappe Gummi Metall – 1 Flügel Metall – 2 Flügel		<u>-</u>	7,0 3,2 —	5,5 3,2 1,5	3,2 3,1 1,3
Rückschlagventil waagerecht senkrecht		10,5	10,3 3,4	8,0	5,0
Hahn	→ ∰	1,0	-	_	_ '
Lyrabogen glatt gefaltet	Ω	=	0,75 1,5	0,75 1,5	0,75 1,5
Wellrohrausgleicher je Welle	W.	, -	0,2	0,2	0,2
Wasserabscheider Eintritt normal Eintritt tangential	→		3,0 58	3,0 58	3,0 58

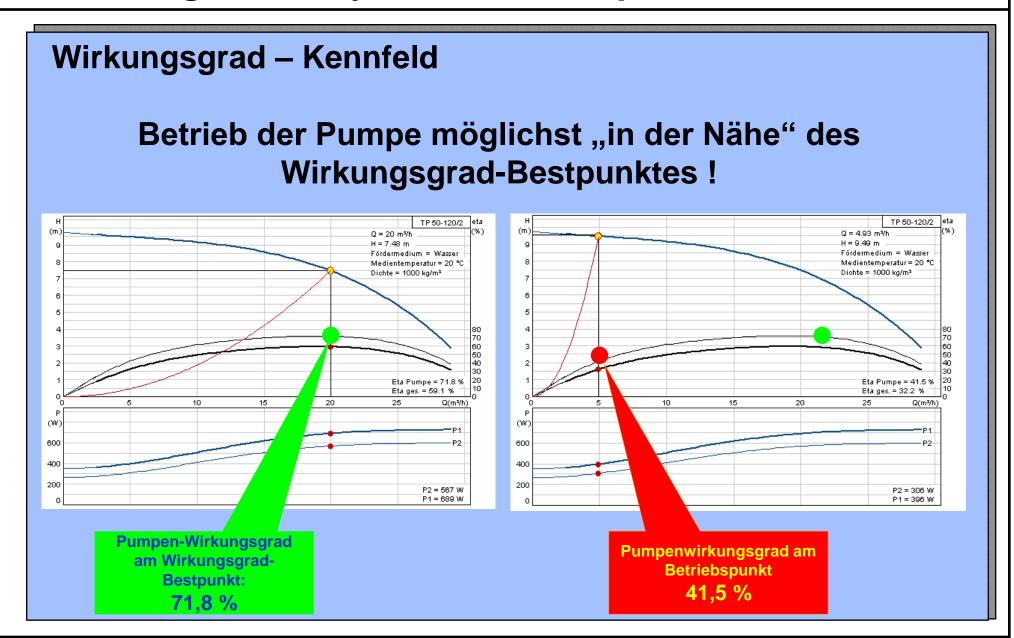
einschl. Rohrreibung (λ = 0,02); turbulentes Zuströmprofil.
 Glück, B.: Druckverluste, VEB-Verlag, Berlin 1988.

Grundlagen zur Hydraulik – Rohrnetz (geschlossen)

Entgegen des SI-Einheitenystems werden für Rohrnetzund Pumpenauslegung abweichende Formelzeichen verwendet:

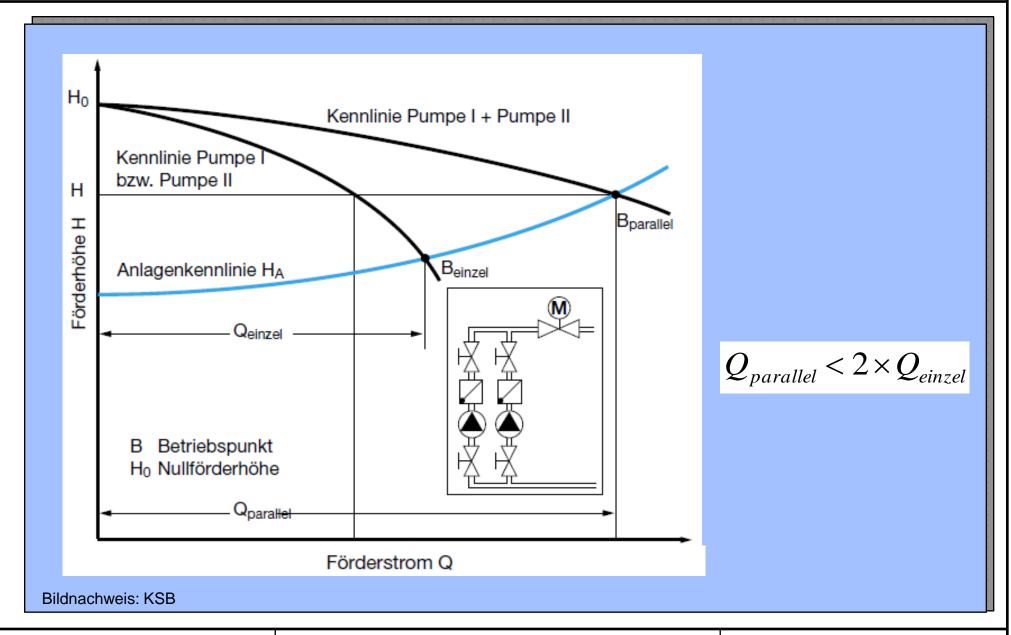
$$Q = \text{F\"{o}}\text{rderstrom in} \qquad \left[\frac{l}{h}; \frac{l}{s}; \frac{m^3}{s}; \frac{m^3}{h} \dots\right]$$

$$H$$
 = Förderhöhe in $[m]$


Grundlagen zur Hydraulik – Pumpen

Wirkungsgrad

Wirkungsgrad $\eta = \frac{P_{ab}}{P_{ab}}$


Grundlagen zur Hydraulik – Pumpen

Grundlagen zur Hydraulik – Parallelschaltung

Grundlagen zur Hydraulik – Energetische Optimierung

Für die Anlagenkennlinie gilt:

Förderstrom

$$Q_2 = Q_1 \cdot \left(\frac{n_2}{n_1}\right)$$

80% Drehzahl heißt 80% Förderstrom, 50% Drehzahl heißt 50% Förderstrom.

Förderhöhe
$$H_2 = H_1 \cdot \left(\frac{n_2}{n_1}\right)^2 = \left(\frac{Q_2}{Q_1}\right)^2$$

64% Förderhöhe, 25% Förderhöhe.

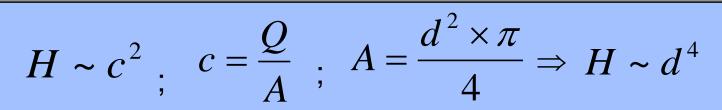
Leistungsaufnahme

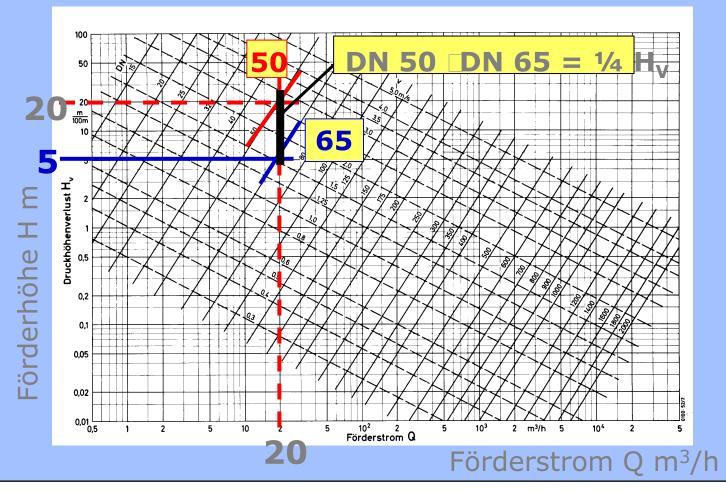
$$P_2 = P_1 \cdot \left(\frac{n_2}{n_1}\right)^3 = \left(\frac{Q_2}{Q_1}\right)^3$$

und nur 51 % Leistungsaufnahme, bzw. 12,5% Leistungsaufnahme.

⇒ Nutzung der Einsparpotentiale setzt variable Fördermengen voraus!

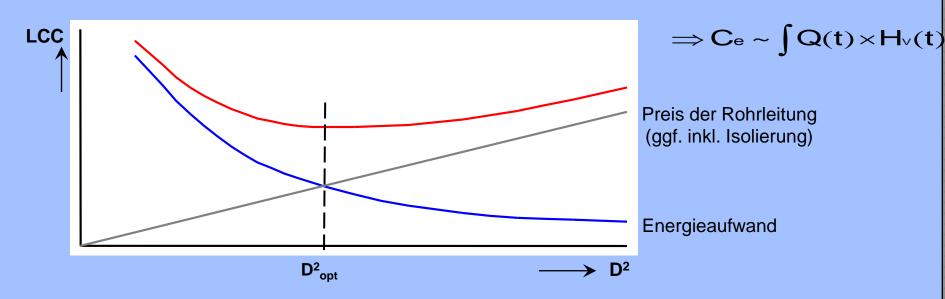
Affinitätsgesetze aus der Ähnlichkeitsmechanik:


Lineare Zunahme/Abnahme des Förderstroms bei linear ansteigender/fallender Drehzahl


Quadratische Zunahme/Abnahme der Förderhöhe bei linear ansteigender/fallender Drehzahl

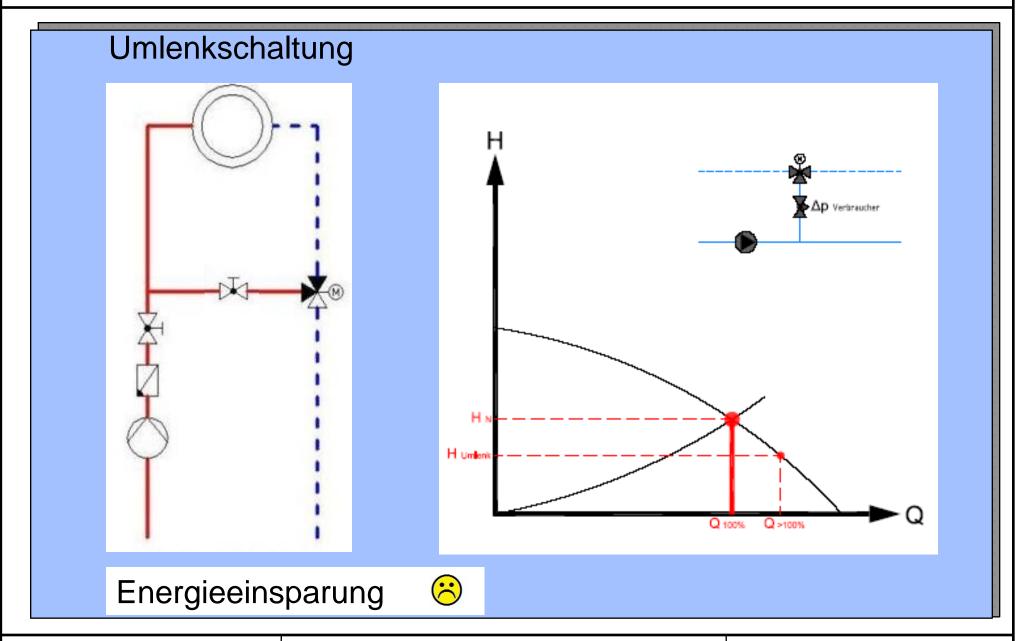
Kubische Zunahme/Abnahme der Leistungsaufnahme bei linear ansteigender/fallender Drehzahl

Grundlagen zur Hydraulik – Energetische Optimierung

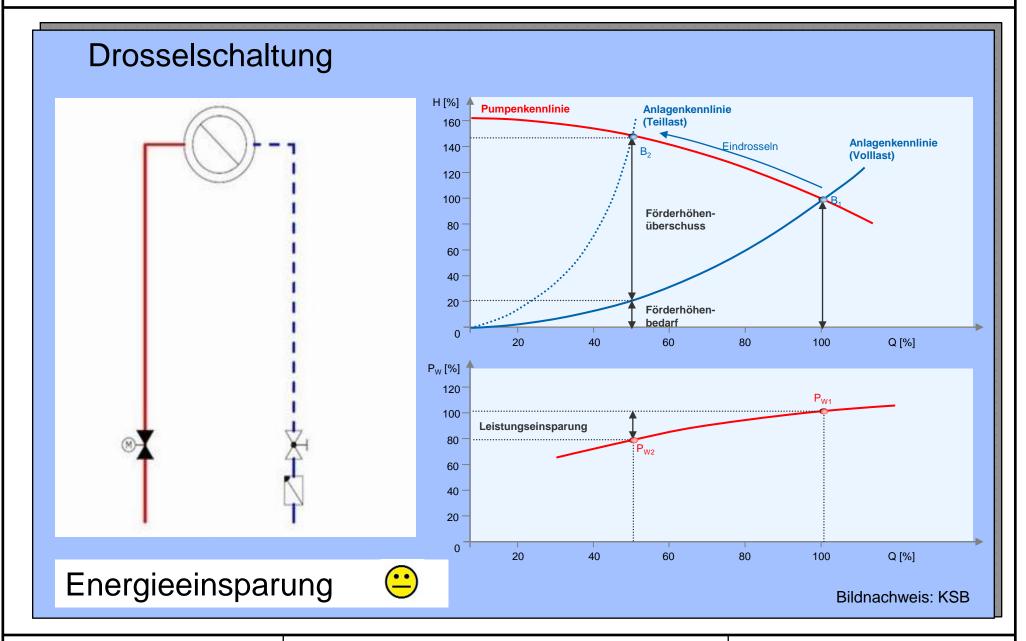

Grundlagen zur Hydraulik – Kostenoptimierung

Dimensionierung von Rohrleitungen:

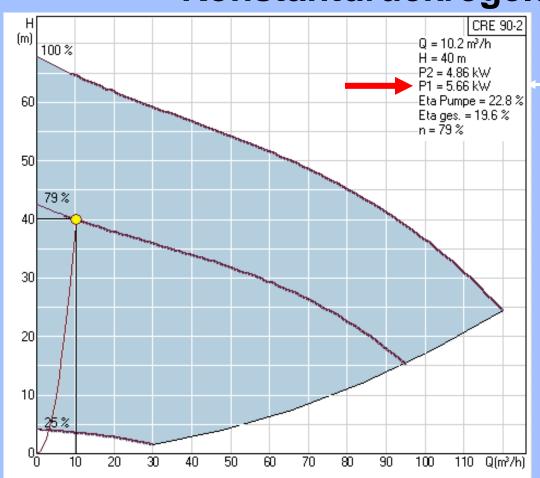
üblich: Richtwerte der Fließgeschwindigkeit als Ausgangsgröße zur Festlegung von D


besser: Kostenoptimierung von Investitions- und Energiekosten

- Investitionskosten für Rohre gemäß $C_{i,Rohr} = k \cdot D^2$
- Energiekosten (C_e) über Verlustbeiwerte der Einzelkomponenten



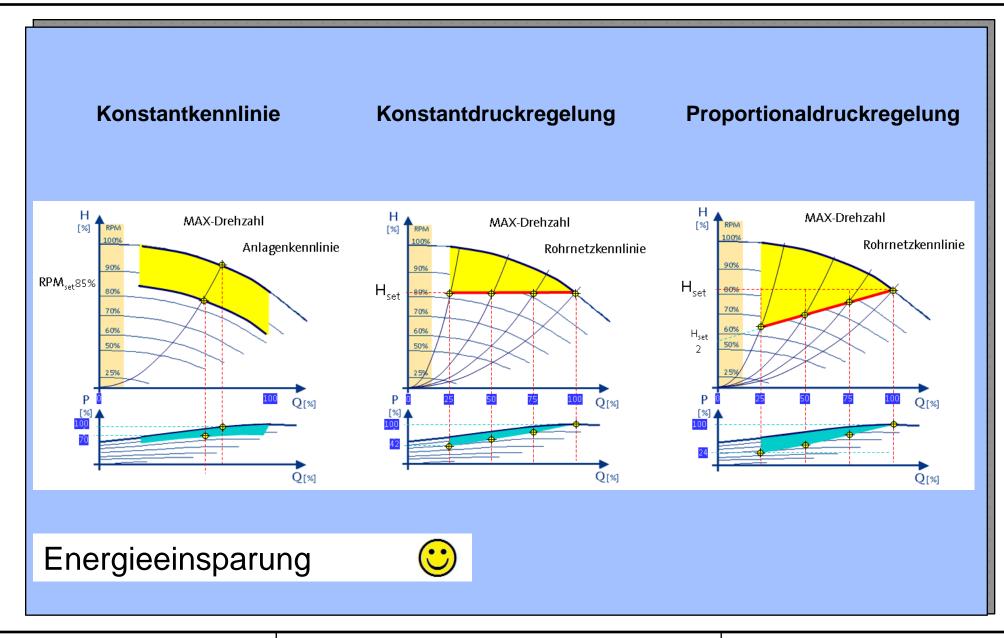
Bildnachweis: KSB

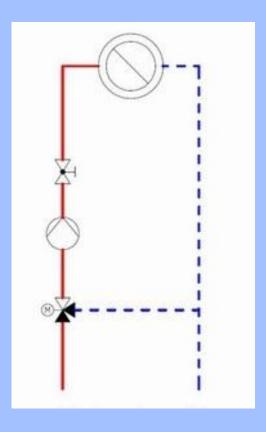


Grundlagen zur Hydraulik – Drehzahlregelung

Konstantdruckregelung

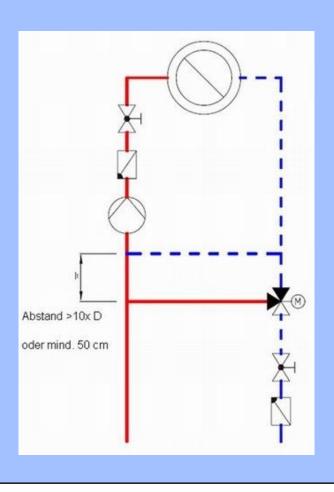
Leistungsanpassung P₁:


5.0 kW bis 15 kW


Bildnachweis: Grundfos

Grundlagen zur Hydraulik – Drehzahlregelung

Beimischschaltung


Merkmale:

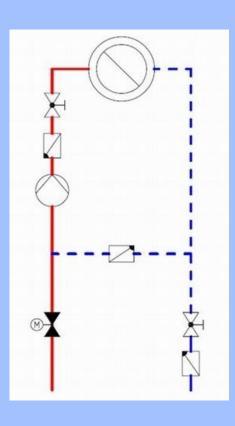
- konstanter Volumenstrom sekundär
- keine Rücklaufanhebung
- variabler Primärwasserstrom

kein Vordruck erforderlich (druckloser Verteiler)

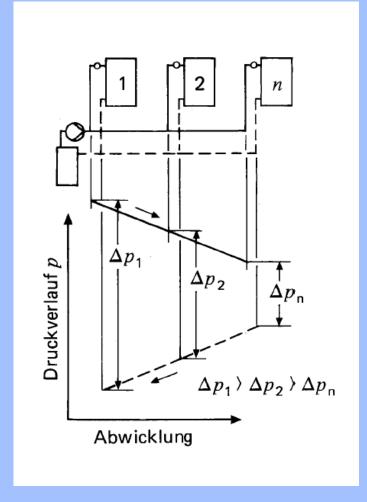
Einspritzschaltung mit 3-Wege-Ventil

Merkmale:

- konstanter Durchfluss im Primär- und Sekundärkreis
- Rücklauftemperaturanhebung
- geeignet zur Temperaturmischung
- kurze Reaktionszeit



Ablaufschaltung oder Einspritzschaltung mit 2-Wege-Ventil



Merkmale:

- variable Wassermenge primärseitig
- geeignet für variable und konstante Wassermenge sekundärseitig
- unterschiedliche Temperaturen primärund sekundärseitig möglich
- Hauptpumpe erforderlich (druckbehafteter Verteiler)

 Δp_1 Δp_2 Druckverlauf p $\Delta p_1 \approx \Delta p_2 \approx \Delta p_n$ Abwicklung

Druckverlauf Zweirohranlage

Bildnachweis: Recknagel

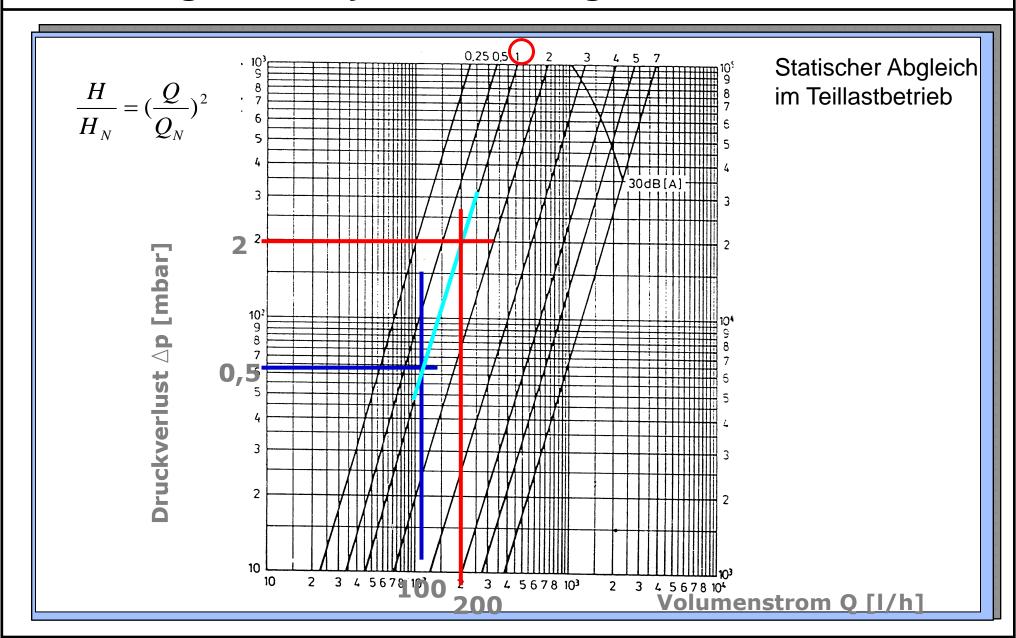
Druckverlauf bei der Tichelmannschen Rohrverlegung

Statischer Strangabgleich

Voreinstellbares Thermostatventil

Bildnachweis: Danfoss

$kv = \frac{m}{\sqrt{dp}}$


Strangregulierventil

Bildnachweis: Oventrop

- statischer Abgleich für Auslegungsfall, im Teillastbetrieb wirkungslos
- max. Druckdifferenz beachten (Geräusche)
- kaum zusätzlicher Druckverlust

Dynamischer Abgleich:

Bei Anlagen mit unterschiedlichen Verbrauchern bzw. großen Rohrnetzen sollte der dynamische Abgleich gewählt werden

Bildnachweis: IKZ-Haustechnik

- Abgleich begrenzt Differenzdruck an den Verbrauchern
- keine Geräuschbildung
- Einmalige Einstellung, Umbauten erfordern keine Nachregulierung
- Höhere Differenzdrücke erforderlich (große Unterschiede bei den marktverfügbaren Ventilen)!

